تشخیص پیوسته میزان استرس در طول رانندگی با استفاده از روش خوشهبندی Fuzzy c-means
نویسندگان
چکیده مقاله:
Stress is one of the main causes of physical and mental disorders leading to various types of diseases. In recent two decades, stress level detection during driving to avoid accidents has attracted much of researchers’ attentions. However, the existing studies usually neglect this fact that stress level during driving varies due to irregular events. Contrary to the previous works, this paper demonstrates that to assume a fixed level of stress for a long period- e.g. while driving in highway- is unreasonable. According to the above assumption, a novel approach for continuous stress detection is proposed based on fuzzy c-means clustering and cluster labeling by the expert. Fuzzy c-means clustering is used to specify levels of stress instead of the former different classification and labeling methods. Concurrently, utilizing background knowledge of data and clustering results, the label of each cluster is obtained. Then, proper weights are assigned to labeled clusters. By combining the membership values of clusters and weights associated with each cluster’s label, a score of stress is obtained in short time intervals. Stress in driving dataset provide stressful conditions during real driving. The experiments were performed on a specific route of open roads and where drivers traverse were limited to daily commutes. For each drive, Electrocardiogram (ECG), Electromyogram (EMG), foot and hand Galvanic skin response (GSR), respiration and marker signals were acquired from the sensors worn by the driver. Clearly, the more number of physiological signals are used, the more computational cost must be paid, so in this work, heart rate, EMG, foot GSR and hand GSR from mentioned dataset are selected. After that, six features consisting of the mean value of the heart rate, the mean value of EMG, the mean value of the hand GSR and the mean value of foot GSR in addition to mean absolute differences for hand and foot GSR are extracted for each 10 second window (100 second window with 90% overlap) of signals. Next step is to cluster via fuzzy c-means algorithm. In this study, the data is located in 5 clusters and according to the membership degree of each window, input signals and background data from dataset, an adequate label is assigned by the expert to each cluster. The labels of these five clusters are "very low", "low", "medium", “high" and "very high" stress, which are respectively the least stressed to the most stressful. Therefore, the base weight vector is obtained as . The weights assigned to the clusters will be a permutation of the mentioned base weight vector. After assigning the weight of clusters, in each window, the membership degree obtained by the Fuzzy c-means method is multiplied by the weight assigned to that cluster and the resulting numbers are accumulated for the 5 clusters. The calculated value scales to the range of 0 to 100, in order to quantifying the stress. For better representation, a collection of 100 different colors in the range of dark blue to dark red of the visible spectra will be defined by the use of “colormap” command in MATLAB. By taking the calculated value to the range of 0 to 100, one of the mentioned colors will be chosen. So the color will be associated to the stress value of the corresponding window. In this paper, in addition to the qualitative assessment of the results, the correlation between the determined stress and subjective rating scores is considered as a quantitative criterion. The results illustrate the effectiveness of the proposed method to improve both the precision and accuracy of stress detection. In fact, the stress in driving dataset have imprecise labels which the proposed systematic approach estimates the stress continuously utilizing the background knowledge of data. The results clearly represent valid, efficient criteria for stress during driving in each moment without using long time window, show the continues stress from the beginning of the experiment until the end of it, and exaggerate individual differs and unexpected hazards during the experiment.
منابع مشابه
رهیافتی خودکار برای ارزیابی پیوسته استرس حین رانندگی بر مبنای روش خوشه بندی c-means فازی
این مقاله روش جدیدی برای ارزیابی استرس رانندگی با استفاده از خوشه بندی فازی ارائه می دهد. در پژوهش های پیشین، استرس رانندگی در سطوحی گسسته اندازهگیری شده اند، اما در این مقاله نشان داده شده که ثابت در نظر گرفتن سطح استرس در یک دوره زمانی طولانی صحیح نیست. با کنار گذاشتن گسسته در نظر گرفتن سطوح استرس، دادگان بدون برچسب فرض می شوند. در نتیجه یک روش خوشه بندی پیشنهاد شده تا فقدان طبقه بندی کننده...
متن کاملتصحیح سیستم طبقهبندی امتیاز تودهسنگ با استفاده از الگوریتمهای خوشهبندی k-means و fuzzy c-means
با توجه به اهمیت و کاربرد سیستم طبقهبندی امتیاز تودهسنگ در مهندسی سنگ، هدف از این مقاله تصحیح کلاسهای نهایی این سیستم طبقهبندی با استفاده از الگوریتمهای خوشهبندی k-means و fuzzy c-means (FCM) است. در سیستم طبقهبندی امتیاز تودهسنگ دادهها توسط یک سری از اطلاعات اولیه بر مبنای نظریات و قضاوتهای تجربی طبقهبندی میشوند ولی با کاربرد الگوریتمهای خوشهبندی در این سیستم طبقهبندی، کلاس...
متن کاملاستخراج الگوهای ترافیکی شهر calgary با استفاده از الگوریتم fuzzy c-means
ترافیک و حل مشکلات آن یکی از زمینه های کاربردی مهم در سیستم های اطلاعات مکانی می باشد. با توجه به اهمیت و تاثیرات ترافیک در جوانب مختلف حیات انسان، در نظر گرفتن مکانیزم هایی کارا جهت مدیریت آنها، همواره مورد توجه متخصصان حوزه های مختلف بوده است. داده کاوی مکانی فرآیندی است که الگو های مکانی مفید و جالب توجه را از پایگاه داده مکانی به صورت اتوماتیک از میان کمیت های بیشمار داده های مکانی استخرا...
اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
متن کاملاثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
متن کاملVector fuzzy C-means
Many variants of fuzzy c-means (FCM) clustering method are applied to crisp numbers but only a few of them are extended to non-crisp numbers, mainly due to the fact that the latter needs complicated equations and exhausting calculations. Vector form of fuzzy c-means (VFCM), proposed in this paper, simplifies the FCM clustering method applying to non-crisp (symbolic interval and fuzzy) numbers. ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 14 شماره 4
صفحات 129- 142
تاریخ انتشار 2018-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023